On vector bundles over hyperkähler twistor spaces

نویسندگان

چکیده

We study the holomorphic vector bundles E over twistor space $${{\,\mathrm{Tw}\,}}(M)$$ of a compact simply connected hyperkähler manifold M. give characterization semistability condition for in terms its restrictions to sections projection $$\pi \,:\, {{\,\mathrm{Tw}\,}}(M)\,\longrightarrow \, {\mathbb {CP}}^1$$ . It is shown that if admits connection, then holomorphically trivial and connection on as well. For any irreducible bundle prime rank, we prove restriction generic fibre $$ stable. On other hand, K3 surface M, construct examples composite rank whose every non-stable. have obtained new method constructing spaces; this employed these examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperholomorphic bundles over a hyperkähler manifold.

Hyperholomorphic bundles over a hyperkähler manifold. 0. Intruduction. The main object of this paper is the notion of a hyperholomorphic bundle (Definition 2.4) over a hyperkähler manifold M (Definition 1.1). The hyperholomorphic bundle is a direct sum of holomorphic stable holomor-phic bundles. The first Chern class of a hyperholomorphic bundle is of zero degree. Roughly speaking, the hyperhol...

متن کامل

On Stable Vector Bundles over Real Projective Spaces

If X is a connected, finite CJF-complex, we can define iKO)~iX) to be [X, BO] (base-point preserving homotopy classes of maps). Recall [2] that if xEiKO)~iX), the geometrical dimension of x (abbreviated g.dim x) can be defined to be the smallest nonnegative integer k such that a representative of x factors through BO(k). If $ is a vector bundle over X, the class in (PO)~(X) of a classifying map...

متن کامل

Differential operators on equivariant vector bundles over symmetric spaces

Generalizing the algebra of motion-invariant differential operators on a symmetric space we study invariant operators on equivariant vector bundles. We show that the eigenequation is equivalent to the corresponding eigenequation with respect to the larger algebra of all invariant operators. We compute the possible eigencharacters and show that for invariant integral operators the eigencharacter...

متن کامل

Vector Bundles over Classifying Spaces of Compact Lie Groups

The completion theorem of Atiyah and Segal [AS] says that the complex K-theory group K(BG) of the classifying space of any compact Lie group G is isomorphic to R(G)̂ : the representation ring completed with respect to its augmentation ideal. However, the group K(BG) = [BG,Z × BU ] does not directly contain information about vector bundles over the infinite dimensional complex BG itself. The purp...

متن کامل

Moduli Spaces of Vector Bundles over a Klein Surface

A compact topological surface S, possibly non-orientable and with non-empty boundary, always admits a Klein surface structure (an atlas whose transition maps are dianalytic). Its complex cover is, by definition, a compact Riemann surface M endowed with an anti-holomorphic involution which determines topologically the original surface S. In this paper, we compare dianalytic vector bundles over S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02893-6